skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hughey, Stephen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Multi-Level Fast Multipole Algorithm (MLFMA), a variant of the fast multiple method (FMM) for problems with oscillatory potentials, significantly accelerates the solution of problems based on wave physics, such as those in electromagnetics and acoustics. Existing shared memory parallel approaches for MLFMA have adopted the bulk synchronous parallel (BSP) model. While the BSP approach has served well so far, it is prone to significant thread synchronization overheads, but more importantly fails to leverage the communication/computation overlap opportunities due to complicated data dependencies in MLFMA. In this paper, we develop a task parallel MLFMA implementation for shared memory architectures, and discuss optimizations to improve its performance. We then evaluate the new task parallel MLFMA implementation against a BSP implementation for a number of geometries. Our findings suggest that task parallelism is generally superior to the BSP model, and considering its potential advantages over the BSP model in a hybrid parallel setting, we see it to be a promising approach in addressing the scalability issues of MLFMA in large scale computations. 
    more » « less